

2019 LexisNexis IP Conference, Taipei:

Multidisciplinary Scientific Analysis in Intellectual Property Disputes

知識產權糾紛之跨領域科學分析

黃奎瑞博士 Ray Huang, Ph.D., P.E., CFEI 香港毅博 首席工程師暨總經理 Principal Engineer and Office Director, Exponent Hong Kong

楊含章 Cathy Yang 香港毅博 科學顧問 Scientist, Exponent Hong Kong

bei: sis in

Types of Experts

- The Inventor
- Technical Expert Focus of today's talk
 - Consulting Expert
 - Testifying Expert
- Patent Expert
- Damages Expert

$E^{\chi}ponent^{*}$

Take Home Message

- Break down the problem
- Enable story telling

Before You Hire Expert(s)

Example

- Food ingredient in a yogurt product.
- Do I need a yogurt expert? Let's break it down:
 - Is the ingredient truly in the yogurt? \bullet
 - Do the manufacturing process and supply chain incorporate this ulletingredient?
 - What was the rationale for using this ingredient?
 - Could this ingredient turn into something else, or is it a product of ۲ something else?
 - What is the effect of this ingredient?
- Each objective suggests a different type of expertise and perhaps a different type of expert.
- Perfect team/individual a toxicologist (team) with a strong chemistry background and extensive quality control and food manufacturing experience in the food product industry.

General Guideline

- Core Issues vs. Occupation/Disciplines
- Opinions should help legal theory and strategy and be driven on the basis of fact and experience.
- Selection:
 - A professional team that can be focused on scope, schedule, and budget requirements.
 - Able to deliver an objective, scientifically defensible work product.
 - Able to translate complex issues into a compelling presentation to the jury.
- Early involvement
- *Before* engaging the engineer/scientists, break down the core issues that need to be addressed in your case to form and build the team.

After You Hire Expert(s)

"Power Factor" Storytelling

E^{χ} ponent^{*}

General Guidelines

- Enable story-telling.
- Context and delegation:
 - Technical expert should understand the entire patent and all claims at issue before technical analysis or laboratory testing begins.
 - Delegate all analysis and testing; ideally, each of your experts should understand what role he/she plays in the case.

Best Practices

- Foster conviction and objectivity.
 - The expert can say "I did XYZ testing..." or "I did this experiment to prove XYZ", which can be leveraged if opposing expert is subpar.
 - Conversely, do not try to convince the technical expert to opine on something specific that he/she does not necessarily fully support—the lack of conviction will be obvious.
- Avoid micromanaging.
 - Double check and communicate about work product. Ensure there are no last minute substantial additions.
 - Do not write or draft any sections that are not specifically related to legal issues.
 - The expert should be able to say "I wrote this report" and "I wrote this entire report, every single word in it."

Case Study | Patent Infringement Analysis for an ITC Investigation

Microphone Detection in Mobile Devices

E^xponent^{*}

Traditional polling mechanism

Processor samples jack characteristics at a predefined interval and uses them to determine whether microphone is present.

Interrupts and co-processors

Processor's "assistant" does the work, which notifies processor when a microphone is present.

Processor notified that accessory is present

Co-processor

Different Ways of Detection

Traditional polling mechanism

Processor samples jack characteristics at a predefined interval and uses them to determine whether microphone is present.

Interrupts and co-processors

Processor's "assistant" does the work, which notifies processor when a microphone is present.

E^xponent^{*}

Patent - Dedicated Circuitry for Microphone Detection

Key point: The **determination** is made in the CODEC, not the processor.

Processor notified that accessory is present and can query whether it is a

Determine whether certain devices infringe the patent.

Images from iFixit (www.ifixit.com)

The hardware components are present, but is the determination actually being made within the CODEC or the processor?

Processor

Source Code was Examined

Code caters to a number of models.

(not all files are relevant)

We wrote customized scripts to filter out unwanted files based on the phone model of interest.

outputs*.

*Required bypass of restrictions on phones to access diagnostic data (i.e., "jailbreak").

Source Code (1,300 files)

Examined remaining files and cross-referenced them to the phone's diagnostics message

More Case Studies

Materials Chemistry, Polymer Physics, Structure and Property Characterization

Biopharmaceutical for Primary Containers, Combination Products, and Medical Devices

Case Study | Identification of Counterfeit Memory Chips

Exponent was asked to identify counterfeit memory chips.

E^xponent^{*}

High-resolution microscopy was used to identify differences.

Counterfeit

Genuine Sample

X-ray analysis revealed further differences in routing of traces. Counterfeit Genuine Sample

We were asked to sort several hundreds of thousand of these...

Exponent

Analysis algorithms were developed to batch process samples.

nent

• Line integral of intensity along theta = 0

• Threshold line integral and determine if

Case Study | Rollerblade Patent Infringement

Exponent was asked to demonstrate evaporative cooling of feet.

Exponent

Key patent claims:
Holes in boots
Movement of liner allows pumping action → air flow
Cooling of skater's feet

Competitors' skates had holes.

We demonstrated the moisture-wicking properties of the liner.

- Key claim: cooling was due to moisture evaporation.
- ASTM method for testing water vapor transmission of materials based on the weight of water in the vessel.
- Water vapor transmission rate (WVTR)

WVTR = $\frac{G/t}{\Delta}$

Real-time Temperature Monitoring

1ent°

Ľ۷

- Volunteers wore boots inside an environmentally controlled chamber.
- Holes on right boot were blocked by tape.
- Thermocouples were installed at the ankles inside the boots for real-time temperature measurement.
- Left boot was consistently lower in temperature.
- Testing was performed on 20 30 skater models.

kle	·**• •••• •		1	
and and	dina siyada			
ot at le	eft ar	nkle		
60 60 e (min)	70	80	90	

TiCl₄ allowed flow visualization inside the chamber.

- skates.
- Chamber was sealed off from the outside environment.
- that went in and out of the holes.

TiCl₄ was dropped into the holes of the

The pumping action of skater's feet back and forth created white clouds

Multidisciplinary Scientific Analysis in Intellectual Property Disputes

- *Before* engaging the engineer/scientists, break down the core issues that need to be addressed in your case to form and build the team.
- *After* hiring the expert(s), enable "story telling" for both in-house and technical experts with appropriate support and scoping.

Patent Infringement & Invalidity **Reverse Engineering**

Technology Identification

Genuine Sample

